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Flat elasticity theory application for the 
description of stressed state and fracture of 
solids under phase transitions 

A. A. B U L B I C H  
Research Institute of Physics of Rostov University, 344104 Rostov-on-Don, Russia 

The stress function is proved to be biharmonic for an elastically isotropic crystal undergoing phase 
transition which follows spontaneous dilatation. For an elastically anisotropic crystal which is 
neither improper nor proper ferroelastic, as well as for the improper ferroelastic, the stress function 
is proved to fulfil the Lehnitsky equation. The flat elasticity theory methods are extended to the 
case of crystals undergoing phase transitions. The stressed state, arising due to the phase 
transition in a crystal with a crack or with a rigid inclusion, is described. The spontaneous fracture 
conditions of crystals under phase transitions are obtained. 

1. I n t r o d u c t i o n  
It is well-known that the phase transitions (PTs), (es- 
pecially the first-order PTs) in crystals or ceramics 
often result in their fracture. The main fracture origin 
is the spontaneous deformation, which can give rise to 
stress concentration at the inhomogeneities. 

The technical application of crystals, ceramics and 
composities undergoing PTs gives rise to the problem 
of describing the mechanics of such materials, prim- 
arily in relation to their stressed-strained state. In 
order to solve this problem it is necessary to extend 
the methods of elastic theory to the case of an elastic 
body exhibiting non-linear properties arising due to 
the PT, and to determine the correspondence of the 
mechanical and thermodynamic properties of the 
above solids. 

In this  paper the mathematical apparatus which 
makes it possible to solve the important class of the 
above problems (the description of a flat stressed state 
of solid undergoing PT) is constructed. For  an elast- 
ically isotropic solid in which the dilatant PT of a sec- 
ond order or of a manifested first order, took place, the 
stress function is proved to fulfil the linear biharmonic 
equation in spite of the non-linearity of the state 
equation. In the elastically anisotropic crystals (which 
are neither ferroelastics nor improper ferroelastics, as 
well as for the improper ferroelastics) the Lehnitsky 
equation is proved to be true for the stress function. 
The relations of Kolosov-Mus'helishvily potentials 
[13 (or of Lehnitsky potentials [2, 3]) with the stress 
tensor and displacement vector are obtained. This 
generalization makes it possible to u~e the effective 
methods of two-dimensional mechanics (as the con- 
formal transformation method) for the case of solids 
undergoing PTs. Two types of problem, homophase 
and inhomophase, should be considered in these 
solids. In the homophase problem the elaborated gen- 
eralization makes it possible to obtain the solution 

directly in analogy to the problem in a solid without 
PT, the solution being exact if it was exact in a solid 
without PT. 

As an example of the application of this method, the 
problems of a crack and a rigid inclusion in solids 
undergoing PTs are considered. The exact solutions 
are obtained for the case of an elastically isotropic 
solid in which a dilatant PT had taken place, and for 
an improper ferroelastic with cubic elastic anisotropy 
and both dilatant and shear spontaneous deforma- 
tion. The spontaneous fracture conditions of crystals 
undergoing PTs are obtained. 

The spontaneous fracture conditions are estimated 
using the examples of ferroelectrics BaTiO3, PbTiO3, 
K T a l - x  NbxO3, and the improper ferroelastic ZrO2. 
The estimations showed that in these crystals the 
defects of the length L ~ 1 gm cause crystal fracture 
even at the point of PT (which in these crystals are 
PTs of the first order). The estimation for high-tem- 
perature superconductors showed that defects of 
length L ~- 100 l, tm cause fracture of these materials at 
temperature T ~- Tc - 10 K, where Tc is the temper- 
ature of the transition into superconducting phase. 

2. Flat elasticity theory in an elastically 
isotropic solid undergoing phase 
transition 

Consider the free energy describing a PT 

F = fe~(uik) + ~g(Vrl) + f ( r l )  

+f~t(rl, U i k ) } d V - f s P i U i d S  (1) 

where U~k is the strain tensor, r I the order parameter 
(OP) describing the PT [4], V the solid volume, S that 
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part of the surface to which the forth P~ is applied, 
u~ the displacement vector. 

Consider first the simplest case of the second-order 
PT which is described by one-component OP in the 
elastically isotropic solid. In this case 

f~,(Ulk) = ~u~ + gU{k (2) 

1 2 1 4 
f ( q )  = ~s r l  + v13n q 

(3) 

(4) f s t ( r l ,  Ulk) = A l l  2uu 

where )~ and p are elastic constants, 9, a, 13 are the 
phenomenological constants, (g > 0, s = a ( T -  To), 
a > 0), T is the temperature, and Tr the Curie temper- 
ature. In the case of PTs generated by defect dissolu- 
tion, c~ = a(c  - G) ,  where c is the defect concentration, 
c~ its value at the PT point. In the case of a second- 
order PT, 13 > 0.A is the striction factor. 

If the inhomogeneity scale (the size of the crack or 
inclusion) L >> r~, where r~ --~ ( . q / s )  1 /2  (the OP correla- 
tion length) the gradient term in Equation 1 can be 
neglected. (In the homophase problems, the gradient 
term, if neglected, results in mistakes in a small vicinity 

re near the stress concentrator. For most crystals 
undergoing structural PTs, r, is small; for example, for 
ferroelectrics its value runs from several to several tens 
of lattice parameters [5]. Taking the gradient term 
into account becomes important in heterophase small 
nuclei problems [6-8]. In the case of a nucleus of size 
L > re, the gradient term can also be neglected.) 

Minimization of Equations 1-4 with respect to OP 
and u~ gives 

s t  I + 13rl 3 + 2 A q u l i  = O 

8xk (5) 

ChknklS = P i (S )  

where nk is the surface normal unit. The stress tensor 
has the form 

(~ik = ~ ! A j j ~ i k  + 2]'tUik + Ar128ik (6) 

The potential Equation 1-4 and the equations of state, 
Equations 5 and 6 describing the second-order PT 
from the high-symmetry phase, q = 0, into the low- 
symmetry phase q = r I(x, y) # 0. 

It is well-known [1, 9], that the equations of the 
mechanical equilibria (Equation 5) are in a two- 
dimensional case identically fulfilled if the stress tensor 
components are expressed with the help of the stress 
function U (x,  y) 

6 2 U (~2 U 3 2 U 
8 X  2 - -  ( Y y y ;  8y2 - -  ~ x x ;  8 x O y  c~y (7) 

This result makes it possible to describe a fiat stressed 
state of a low-symmetry phase with the help of the 
apparatus of complex potentials of Kolosov and 
Mus'helishvily d0(z ) and ~(z), where z = x + iy  is the 
complex coordinate. The stress tensor components are 
expressed with the help of do(z) and ~(z) as 

f crx~ + %r = 4Redo'(z) 
%, - ~x~ + 2i~x, = 2[edo"(z) + q/(z)] 
o... = ~(o= + %,) (8) 

i~ (~) (X.  + iY . )ds  = do(t) + tdo'(t) + ~(t) 

where the primes indicate the derivative with respect 
to z, the bars indicate the complex conjugation, s( t)  the 
contour arc, X,,  I1, the external force components, 
and ~ = X/2(L + g) the Poisson's ratio in the phase 
q ~ O .  

For  the displacement vector u~ = u, u r = v it is 
obtained from 

2p(u + iv) = J~t~do(z) - zOo'(z} - qt(z) + C z  (9) 

where ~ = (~. + 3~)/(~. + p). Equation 9 corresponds 
to the case of when temperature (or concentration) 
together with s is independent of the coordinates. 

Consider first the case of a flat spontaneous dilata- 
tion, supposing that the spontaneous deformation 
u(O) under the PT is -x~ r 0; = = ik u(0)  , (0) . (0) , (0) U(0) UZZ ~ y y  t"xy x z  

. (o) = O. fs t  = Ar le (u~x  + uyy). The flat spontaneous = I,ty z 

dilatation is a rather exotic case. However, it is shown 
below that the other realistic cases of spontaneous 
dilatation can be reduced to this simple case by means 
of re-designation of variables. In the case of flat di- 
latation 

C -  pA 1~12 ; ,~2 = _ _ S  2 ~-~- )~ -- --2'42 (10) 
13' ~,+p 13 

In the case of the first-order PT, which is close to the 
second order, 13 < 0 and f(rl)  should be taken in the 
form 

1 1 1 
f ( q )  = ~Srl  2 + ~13q 4 + ~Tq 6 (11) 

7 > 0, 13 < 0. PT takes place under s = So = 3132/167. 
It is not difficult to see that in the case of a first-order 
PT in the vicinity of a tricritical point s -- 13 = 0, the 
linear rl 2 dependence on uu is not realized, together 
with the stress function biharmonity. 

However, in many experiments, the dependence of 
OP on temperature can be approximated by 

q2 = ~0 , see > So (12) 
112 - -  b ( s e f  - -  S O )  , S e f  __< S 0 

under q = 0 (in other words in the usual elastically 
isotropic solid) the equation AAU(x, y) = 0 is true for 
the stress function I-1]. Here A = 8 2 / 8 x  2 + 8 2 / 8 y  a. 

It is proved in Appendix 1 that the equation 
AAU(x, y ) =  0, is true in the low-symmetry phase, 
also in the case of a stationary temperature distribu- 
tion A T ( x ,  y) = 0 (or stationary distribution of a con- 
centration A c ( x ,  y) = 0), which results in As(x, y)  = O. 

where sef = S -~" 2 A u u ( x ,  y), So its value at a PT point 
(under s = So the phases rl = 0 and 3"1 ~ 0 energiesare 
equal), b > 0. At the PT point, the OP has a jump qo, 
not far from the OP saturation value. With a sub- 
sequent decrease in temperature, a slow OP increase 
takes place. (For example, the polarization in ferro- 
electrics KDP,  K H P  [10], BaTiO3, PbTiO3 [5, 10], 
SbSJ [11] demonstrates the behaviour of this sort.) 
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Using Equation 10 one can obtain rio 2 = 31131/47; 
b = 2/I 13 [; % = 3132/167, which establishes the corres- 
pondence of Equation 12 to the results obtained in the 
framework of the Landau theory. However Equation 
12, being applicable in the region of the phase diagram 
where the Landau theory is true, can be used in the 
saturation region where the Landau theory does not 
take place (though Equation 6 is true). 

PTs well-described by Equation 12 are termed "the 
PTs of a manifested first order". For this cash, Equa- 
tions 8 and 9 can be obtained where 

~, = )~ -  2A2b (13a) 

C - -  . A  1~ 2 (13b) 

fi~ = n o  ~ - b ( s -  S o )  ( 1 3 c )  

In this paper, fl is used in both cases of PTs; its value is 
given by Equation 10 in the second-order case, and by 
Equation 13 in the case of a PT of a manifested first 
order. 

4. Relationships of flat theory of 
elasticity in anisotropic crystals 
under phase transitions 

Some additional conditions on the elastic constants 
have to be fulfilled in order for the problem in an 
anisotropic solid to be flat [3]. They can be fulfilled 
only occasionally under general crystal orientation; 
however, there is a set of crystallographic classes in 
which these conditions are always fulfilled for the case 
of a basic plane coinciding with the xy plane: D2 (2 2 2); 
C2~(mm2); D2h(mmm); C4(4); $4(4); C4h(4/m); 
D,(4 2 2); C4,(4 m m); D2d(74 2 m); D,,h(4/m m m); C6(6); 
C3h(6); C6h(6/rn); D6(622); C6v(6rnm); O3h(6m2); 
D6h(6/mmm); T(2 3); Th(m3); 0(432); Td(743m); 
Oh(m 3 m). 

Consider a cubic crystal undergoing PT which is de- 
scribed by the n-component OP, r 1 = (i"11, ~12 . . . .  , q,) 

1 2 2 Ll ~c~(uL + . .  + u=) 

+ c12(Ux=Uyy + U~xU= + UyyU=) 

2 2 + c~4(u~y + Ux= + u,=) (17) 

3. The flat problem in the case of 
three-dimensional spontaneous 
dilatation 

Free energy always contains the term 

fst = Arl2(Uxx q- uyy q- Uzz ) (14) 

which generates the three-dimensional spontaneous 
dilatation. (Under the PTs with elementary cell multi- 
plication there is no other striction terms except Equa- 
tion 14, rl 2 being replaced by the sum of squares of OP 
components in the case of a multicomponent OP. The 
exceptions are the improper ferroelastics, considered 
further.) It is shown in Appendix 2 that this case is 
reduced to that considered above with the help of the 
replacement of C by 

C1 - 2(7~ + ~t) c (15)  
3~, + 2p 

Consider the problem of a flat stressed state of 
a thin plate undergoing PT with the three-dimensional 
dilatation (Equation 14). It is shown in Appendix 
2 that the results of Equations 8 and 9 can be used in 
this case again, if ~ and C are replaced in these equa- 
tions 

2lax 2~t 
~ '2  = - -  ; C 2 - C (16) 

7~ + 2g 7~ + 2~ 

In this case all quantities should, be considered which 
have been averaged over the plate width. 

Equations 8 and 9 give the flat elasticity theory 
relations for the case of an elastically isotropic solid 
and a dilatant PT. However, real crystals often dem- 
onstrate strong elastic anisotropy, some of them un- 
dergoing shear spontaneous deformation under the 
PT. Consider this case for the examples of PT with 
spontaneous dilatation in a cubic crystal, and of PT 
with both spontaneous shear and dilatation in a cubic 
improper ferroelastic. 

1 1 1 
f(rl) = ~sr l  2 + ~13,(rl2) 2 + ~[32J4(rl) (18) 

n 
where 112= ~, il 2, J~(q) is the fourth order aniso- 

i = 1  

tropic invariant (if it exists). In the case of BaTiO3 or 
3 

PbTiO3, for example, it has the form J4(rl) = ~ q~. 
i = 1  

Under PTs in crystals which are neither proper nor 
improper ferroelastics, the striction term gains the 
form of Equation 14. 

Consider the most-often realized one-parameter 
phases: the phases in which rll = rl va 0; 1"12 = T~3 
= �9 �9 " = ~ n  = O,  o r  111 = 112 = r l  5~ 0 ;  1"]3 = T ] 4  

. . . . .  q, = 0, etc. The flat elastic problem for this 
case is reasonably to be considered in a more general 
statement for the case of a cubic improper ferroelastic 
with a shear spontaneous deformation (the improper 
ferroelastics are the crystals undergoing PTs, describ- 
ing by multicomponent OP, the striction term being 
composed both of dilatant and undilatant terms. The 
improper ferroelastics are all crystals which are not 
proper ferroelectrics and which undergo PTs without 
elementary cell multiplication (for examplel all ferro- 
electrics [5, 10]) and some crystals undergoing PTs 
with elementary cell multiplication (some antifer- 
roelectrics [5], ZrO2 [12], etc.). In one-parameter 
phases the structure of the striction term is simplified, 
taking the form of I"12, multiplied by the linear combi- 
nation of u~,. The main features of the improper 
ferroelastics can be studied within the example of 
striction term of Equation 19): 

fst = Arl2(uxx + uyy + uz=) + Drl2uxr (19) 

where D = zero in a previous case, q is the value of 
multicomponent OP components which are equal to 
each other, f(rl) andfel(uiD are given by Equations 17 
and 18. Details of the Lehnitsky relations obtaining 
for this case are given in Appendix 3. For stresses they 
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have the form 

cy~ = 2Re[8~ ' ( za )  + 8]~'(z2)3 

c~rr = 2Re[dp'(za) + tF(z2)] 

cy~y - 2Re[Saqb'(za) + 82qr 

oY,  ds + Ca = 2Re[qb(zl) + qJ(zz)] (20) 

o X ,  ds + Cz = 2Re[81~(za) + 82q/(z2) ] 

Ca,2 are the constants. The expression for the displace- 
ment vector takes the form 

{~ = 2Re[paqb(zl) + Pz*(z2)] - [Gax + G2y] fl 2 

2Re[qa qb(za) + q2~(z2)] - [Gay + G2x]rl 2 

(21) 
where 

P1,2 = S l182 ,2  -It- $12 - -  S1481,2;  

$11 Jl- $12~2 2 - -  $14~1,  2 
ql,2 = (22) 

51,2 

Ga = 2c44A. G2 = (Cll + 2c12)D (23) 
Da ' D1 

Da = 2c44(cta + 2ca2)+ 3c~4. 81,2 are the pair of 
solutions of a characteristic Equation A19 which are 
not conjugated. ImSa > Im82. s u values are given by 
Equation A14. In the case of a second-order PT, ~u are 
given by Equation A14 and in the case of the PT of a 
manifested first order, by Equation A22 (Appendix 3). 
We should mention that there are unrenormed 
c u values in the numerators of the Equation 23 and 
renormed in D~. 

The equilibria conditions for the phase q # 0 are 
?~  > 0, ? ~ t -  c~2 > 0, Da > 0 and, in the case of 
a second-order PT, ~ef = ~ -~- 2A(Hxx Jr- Hyy "4- Uzz ) 
+2DUxy < 0 (in the first-order PT case the last in- 
equality is replaced by ~ef < ~0)" 

Equations 20-23 make it possible to describe the 
flat stressed state both in an improper ferroelastic and 
in a crystal which is neither improper nor proper 
ferroelastic. In the latter case, G2 = 0. The form of 
Equations 20 is equal to that in a crystal without any 
PT [3], or in the high-symmetry phase, and differs 
from the high-symmetry phase relations by the values 
of 8~,2. The relations for the displacement vector in 
the phase 1"1 # 0 (Equation 21) differs from that in the 
phase q = 0 by the terms fl 2 describing spontaneous 
dilatation and shear. 

Equations 8, 9, 20 and 21 make it possible to reduce 
the problem of stress-state determination in a trans- 
formed solid to the boundary problem for the complex 
potentials. Consider them within the example of 
a problem of determination of the stress concentration 
arising at the tip of the crack or at a thin inclusion due 
to a PT in a solid. 

5. Stress concent ra t ion  genera ted  
due to  a phase t rans i t ion  on the  
crack t ip 

Consider the low-symmetry phase of a crystal. In the 
case of a second-order PT it should be supposed 

< 0, and in the case of a first-order PT, ~ < So. 
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Consider first the problem of a stress applied to the 
boundary of solid. It is not difficult to see that in the 
case of the elastically isotropic solid, the expressions 
for cylk in the phases q = 0 and 1"1 # 0 do not differ 
from each other. Thus stress distributions in these 
phases are equal. 

In the elastically anisotropic solid, stress distribu- 
tion in the phase q # 0 differs from that in the phase 
q -= 0 due to the 51, 2 dependence on the elastic con- 
stant values in these phases (Equation 23). However, 
the displacement given on the crystal boundary results 
in additional stress which can be the origin of fracture. 

Consider the infinite constrained crystal with the 
thin brittle crack of length 2L. Consider two cases of 
constraint: (1) uu( ~ ) = 0; (2) uyy( ~ ) = 0 in the elasti- 
cally isotropic solid with the flat dilatation. The exact 
solution of this problem is given in Appendix 4.1. The 
stress asymptotic near the crack tip x = L + P; Y = 0 
(p ~ L) is A( f 

(yyy . - -  Vl-,2 ]7]2 (24) 

where V a = 2, V2 = (~, + 2p)/~t correspond to the 
constraints of types 1 and 2. The cracking condition 
following from Equation 24 has the form 

J~]2La/2 - V l ' 2  K I c  (25) 
2Atoll 2 

In the case of the improper ferroelastic considered 
here, the constraint u x y ( ~ ) =  O also generates the 
stressed state. The exact solution is given in Appendix 
4.2. The crack tip stress asymptotic (x = L + P; Y = 0; 
p ~ L) has the form 

crxy = Dfl 2 (26) 

from which it follows that the cracking condition 

~] 2L1/2  - K n c  (27) 
2Dnl/2 

6. Stress concent ra t ion  on a th in  
inclusion in the  l o w - s y m m e t r y  
phase 

The inclusion which elastic constants differ from that 
of a crystal, being connected with the crystal by the 
displacement continuity condition on its boundary, is 
both the origin and the concentrator of stress. 

Consider a thin rigid inclusion of the length 2L. The 
boundary conditions are u(x, 0 ) = v ( x ,  0 ) = 0 ,  
- L _< x _< L, from which in the elastically isotropic 

case it follows (Appendix 4.3) that the asymptotics at 
the inclusion tip (y = 0; x = L + p; p ~ L) are 

~YY - 4 ~  

(28) 

4yr ~ 

The sign of the striction constant A shows the orienta- 
tion of stretching stress along or across the inclusion. 



Two values of critical temperature correspond to these 
two cases. If A < 0 the crack arises along the inclusion 
under T_< 7'1,; and if A > 0 the crack arises across 
the inclusion under T _< T2r The critical temperature 
values can be determined from the fracture conditions 

~2 1/2 2()V + la)Km~,~ 

~2 1/2 20~ + !u)KicJr ~ 
~2er L = ~ 3 ) ~ -  ~ ,  

(A > 0) 

(A < 0) 

(29) 

The exact solution for the case of the thin rigid inclu- 
sion in the improper ferroelastic is given in Appendix 
4.4. The stress asymptotics are 

In the phase q = 0, the energy fracture criterion can 
be obtained by variation of the difference of the free 
energy of the crystal with and without a crack: 
AF = - pZL2~t(1 - v2)/Eo + 4crL, where Eo is the 
Youngs' modulus, Vo Poisson's ratio in the phase 

= 0, cy is the surface energy. Thus the well-known 
Griffiths criterion follows: (Kj~) = {2~Eo/(1 - Vo2)} 1/2. 

Substituting the Equations A1 and A2 into the 
Equation 1, one can obtain in the low-symmetry phase 

,2 1 ~2 
f = 5uu + laU}~ 1--=413 (33) 

2A 2 
E - (34) 

130~ + ~) 

q., 1 ( ~ x x  - -  - - -  

Plq2 -- P2ql 
( 2 L )  1/2 [Gl(62ql- -8~q2)--  Gz(8~Pa--(52P2)If12 

cyyy = - - -  Re 
Pxq2 P2ql 

,(y=y = - Re Gl(~lq2 - ~2ql) - G2(t~lP2 -- ~2Pl) 1~ 2 
Plq2 P2ql 

Equation 30 can be used for calculation for concrete 
crystals and makes it possible to obtain the cracking 
conditions, but, in a general case, it has a too complic- 
ated form. In the elastically isotropic approximation 
(c~ - c 1 2  = 2c44), the stresses generated by dilatant 
and by shear spontaneous deformations are indepen- 
dent. The spontaneous dilatation generates stresses 
for which the asymptotics are given by Equation 28, 
though the spontaneous shear generates a shear stress 
which has asymptotics 

(Cll q- C12) 2D - 1 ~ 2 ( ~ )  1/2 
~=Y = - ( g ~  -~ ~-~25(~z2 + 3gzz) (31) 

from which it follows the cracking condition 

~]2LU2 KIlc(Cll - -  C 1 2 ) ( C 1 2  -]- 3~1,) (32) 
= 2(~11 + cl2)2D~ 1/2 

The cracking conditions (Equations 25 and 29) are 
obtained for the flat dilatation case. In the case of 
a three-dimensional dilatation, the right-hand part of 
Equations 25 or 29 should be multiplied by 
(3~ + 21a)/{2(~, + la)}, and in the case of a thin plate, 

should be replaced in Equations 25 and 29 by 5% 
(Equation 16) and after that the right-hand part of 
(Equations 25 and 29) should be multiplied by 
(~. + 2g)/2bc 

We should mention that K~c and KII C used in pre- 
vious sections are the phase rl :~ 0 fracture toughness 
values, which is why it is necessary to determine their 
correspondence to the values of fracture toughness in 
the phase r 1 = 0. 

7. Fracture toughness in a low- 
symmetry  phase 

Consider the fracture toughness influence on the PT 
within the example of the elastically isotropic crystal 
described by the potential (Equations 1-4) with the 
crack opened by the stress cryy( ~ ) = P. 

(30) 

where u}k = sijkz%~. In the expression for AF, the last 
term in Equation 33 vanishes and the first two terms 
correspond to the case of the elastically isotropic solid 
with the renormed value of Z.. Thus it follows that the 
fracture toughness values ratio is 

( K ' c ' ]  ~ = (1 - E) / [1  - (E/Z(1 - vo))] (35) 

The stability condition of the phase r I g= 0 results in 
the inequality E < 1. Taking into account Vo < 0.5 [9] 
it is not difficult to find that the denominator of 
Equation 35 never becomes zero. The ratio in Equa- 
tion 35 is monotonically decreasing with increasing 
z ~ [ 0 ,  1]. 

8. Discussion 
The cracking conditions obtained in the previous sec- 
tions make it possible to determine the critical value of 
a crack or of a thin inclusion, L~,. Cracking takes 
place under L _> Lo,. It has a catastrophic character in 
the case of a constrained crystal and a non-cata- 
strophic character in the case of a thin inclusion. In the 
case of a second-order PT, it is not difficult to obtain 
Lc, :', ( T -  To) -2, thus there are no dangerous cracks 
near the second-order PT points. 

However, in the case of first-order PTs, cracks of 
critical size exist even at the PT points. 

Estimating for ferroelectrics BaTiO3, PbTiO3, 
KTal_xNbxO3 A ~ 109-1010 P am  C-2; rio ~ 0.1 
Cm  -2 [13]; K~c ,-- 105 Pam 1/2 [14], one can obtain 
for these crystals Lcr ~ 10-4-10-6m. (The OP for 
ferroelastics is the polarization vector P. For the di- 
electric ferroelectrics (PbTiO3) the additional relation 
divP = 0 has to be fulfilled, thus the above results can 
be used only for the phase P = (0, O, Pz(x, y)). For the 
case of the ferroelectric semiconductor (BaTiO3 at the 
temperature of cubic to tetragonal PT) the polariza- 
tion is screened, the relation divP = 0 disappears and 
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all the above results can be used in all phases, foi 
which point symmetries are listed in Section 3.) 

For ZrO2, estimating ,," (o) ~ 0.1 [15]; X + I~ -~ 
2 x 1011 Pa [16], one can obtain Arl2o ~ 2 x 10 TM Pa. 
Using the value K~c"~ 1 0 M P a m  1/2 [17], one can 
obtain for ZrO2, Lr -~ 10 -6 m. This estimation is true 
for a shear suppressment of ZrO2 as well, because the 
spontaneous shear under the tetragonal to monoclinic 
PT in ZrO2 is of the same order as that of spontan- 
eous dilatation [-18]. 

The above estimations are also true for thin in- 
clusions. 

The estimations show that small macroscopic de- 
fects of the size ~ 1 gm can result in crystal fracture 
even at the point of first-order PT. 

Great  attention is now focused on materials demon- 
strating high-temperature superconductivity. Thus 
it seems to be useful to estimate their spontaneous 
fracture conditions. In order to make the estimations, 
experimental data can be used. The molar specific 
heat jump is Acmolar /Tc  "~ 1 0 J K - ~ m o l  -~ Cu, for 
La2_~SrxCuO4 and for YBa2Cu307 [19]. The dT~/dp 
value lies between 10 -9 and 10 - s  K P a  -1 in different 
L a - S r - C u - O ,  L a - B a - C u - O  and Y - B a - C u - O  high- 
T~ superconductors [20]. The Young modulus value, 
E ~ 10 ~ Pa [21, 22]. Taking into account the relation 

Aa ~ dT~Ac  (36) 
-~- = (3X + 21~) T~ 

where Ac is the specific heat of the unit volume: 
Ac = Ac'p/mo; the density p ~ 10 gcm-3 ;  the molar 
mass of copper mo ~ 100 g mol-~,  one can obtain 
Aa/~3 ~ - 1 0 6 j K - Z m  -3. Taking the value Klc ~ 105 
Pa m 1/2 [23], one can obtain using Equation 25 the 
temperature of spontaneous fracture. For  defects of 
length L ___ 10-4m, T ~ T~ - 10 K, and for defects of 
length L ~- 10 .6 m, T ~  T ~ -  100 K. Thus large de- 
fects L _ 10 -4 m can result in spontaneous fracture of 
high-temperature superconductors. 

The fracture toughness is renormed in a low-sym- 
metry phase. In the elastically isotropic case, its value 
decreases under PT into phase rl # 0. However in the 
anisotropic case, elastic constant renormalization can 
result in an additional phenomenon: the direction of 
the maximal stretching or shear stress can deviate 
from that in the high-symmetry phase. 

Appendix 1. The stress function 
biharmonity,  relations of stress and 
strain and the complex potentials 
The mechanical equilibria, Equations 5, are fulfilled 
identically in the flat case if the stress tensor compon- 
ents are expressed with the help of the stress function 
Equation 7. 

It is well-known that under rl = 0 (in other words, 
in an ordinary elastically isotropic solid without any 
PT) the stress function satisfies the biharmonic equa- 
tion. 

In the phase q = q(x, y) ~ 0 the OP  values can be 
expressed (Equation 5) as 

q2 = _%f/13; %f = ~ + 2Au . ( x , y )  (A1) 
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under See < 0. Consider first a case of a flat spontan- 
eous dilatation fst = Arl2(u~ + urr). In this case the 
subscripts i, j, k take the values 1, 2. the strain tensor 
can be expressed as 

u u = SUk lcrkl + U! ~ (a2) 

= , {o) . (o) O; where u~2 = .lo) A~/[213(~. + p)]; "~r = Uzz = ~'yy 

s111~ = s2222 ~- s ~  = (~ + 2rt)/E41a(~ + ~t)]; 

s1122 = s12 = - ~./[41a(~ + I.t)]; S 1 2 1 2  ~ S4.4. = (2p) -1. 

The value of X is renormed under the PT: 
= X - 2A2/~. The strain tensor components satisfy 

the Sen-Venan relation [1] 

(~2Uxx #2Uyy 
-- 2 ~- 2uxy (A3) 

gy2 + gX 2 Oxgy 

Substituting Equations A2 and 7 into Equation A3, 
one can obtain the equation for the stress function in 
the phase r 1 ~ 0: 

AAU(x,y)  = 0 (A4) 

if ~ = ~(x, y) satisfies the harmonic equation Acz(x, 
y) = 0. This condition is fulfilled, of course, in the case 

= constant; however, ~ = a(T  - To) or ~ = a(c - cc) 
and the condition As = 0 is fulfilled in the more gen- 
eral case of stationary distribution of temperature 
AT(x, y) = 0, or of concentration Ac(x, y) = 0. 

The Equation 2 and Equations 5 and 6 do not take 
into account the thermal expansion which is usually 
small in compar i son  with a striction phenomenon. 
However, thermal expansion can be taken into ac- 
count by adding the Equation 2 the term which is 
linear in temperature and in Ull [9]. In this case the 
stress function satisfies the biharmonic equation if the 
condition AT(x,  y) = 0 is fulfilled. The linear swelling 
of solid under defect dissolution can be taken into 
account in an analogous way. 

Repeating the arguments [1], one can obtain the 
relations of the stress tensor components and complex 
potentials qb(z) and ~(z), Equation 8 being equal to 
that in the high-symmetry phase. 

In order to obtain the expression for the displace- 
ment vector, u~x and uyy (Equation A2) should be 
integrated over x and y correspondingly; the terms 
describing the displacement and the rotation of the 
plane as a whole should be subtracted. After that, only 
one undetermined constant is left, which is fixed by the 
condition ~?u/Oy + ~?v/~x = 2uxy. In the case ~ = con- 
stant, it results in Equation 9. 

Appendix 2. The stress function 
biharmonity in a f lat  problem 
in the case of the three-dimensional  
spontaneous dilatation 
A2.1.  A f la t  p rob lem in the case of  the 

t h r e e - d i m e n s i o n a l  s p o n t a n e o u s  
d i l a ta t i on  

In the case of the three-dimensional spontan- 
eous dilatation (Equation 14), the stress-strain rela- 
tions are 



(2 + 2p)ux~ + 2(uyv + Uzz) + All  2 = Crux 

(2 + 2.)urr + 2(u~ + u=) + Af t  2 = CYry (AS) 

(fv + 2,)u=+~.(Ux~ + uy r) + All 2 = cr= 

Divide the strain tensor into two terms: u~  = Uo+ 
l . ~ ! , ! 

UXX ~ Uyy U 0 "Jr- U y y ,  Uzz = UO; 1.4xy ~ Uxy 

A 
bt 0 - -  _ _  --1,]2 

32 + 2g 

from which it follows that 

(A6) 

~ z z  = ~.(UXX "]- Uyy) 

~ , 2(2 + .)  All2 = o =  
(2 + 2g)u~.~ + ~.uyr + 32 + 2g 

- , 2 ( 2  + ~t) A f t  2 = ~ .  
(2 + 2g)U'y r + ku~ + 3~. + 2~t 

(A7) 

from which it appears that the problem is reduced to 
the case considered above, by the replacement of 
2 and fi 2 by 

2. ; ,  2.X 
~"2 - -  - -  ; 1~2 - -  f i 2  (A10) 

+ 2~ 2 + 2. 

Appendix 3. Flat theory relations 
for the improper cubic 
ferroelastic 
Minimum conditions for the Equation 1 with the free 
energy density (Equations 17-19) results in the state 
equations 

63Xk 1 6314 
aqi + [3,rll i=1 ~ 1"12 + ~ [32 ~ + 2Arhuij + 2Drhux, 

This results in a biharmonic equation for U(x, y) and 
in Equations 8 and 9 in which fl 2 should be replaced 
by 

r _ 2(X + .) fi2 (A8) 
32 + 2 ,  

in the expression for C. 

A2.2. PT wi th  three-dimensional di latation 
in a thin plate 

Consider a flat thin plate of a width 2h,  in which the 
surfaces are free from stress. The equilibria equation 
results in &y=(x, y, +_ h)/& = 0 because 63o=(x, y, + h)/ 
Oz = OOy~(X, y, +_ h)/63z = ~cy=(x, y, +_ h)/63z = 0. It 

(A 1 1) 
= 0 

where 

or= = c , , u =  + c,2(uyy + u=) + A q  2 

%y = c.lu~y + c12(uxx + u=) + Arl 2 (A12) 
(Yxx = C l l U z z  q- C12(Uxx "Jr Ury) 21- Arl 2 

f f xy  = 2C44Uxy + Drl2 

Considering a one-parameter phase and  denoting by 
[3 a factor multiplied by 1"13, o n e  can obtain 

~.q + ~q3 + 2 A q u #  + 2Dqu~ r = 0 (A13) 

The strain tensor should be divided into two parts: 
.{o) ' and Equation A2 should be obtained in htij = ~.ij + Uij 

which the elastic compliance factors and u! ~ for the 
second-order PT case are 

S , 1 1 1  ~ $ 2 2 2 2  ~ -  S 1 ,  ~--- 

S , , 1 2  ~ S14.  ~ - -  

2~,, c.4 - c124. 2~12 g** - c24 
D2 ' S , 1 2 2  = s 1 2  - -  D2 

D2 , S,212 = S4,, --  D2 

D2 = 2~344(t32z - -  C22) - -  2C24(C,1 - -  C12) > 0 

2A 2 2A 2 D 2 
C , 1  = C , 1 - - - ;  C 1 2  = C 1 2 - - - ;  C 4 4  = 6 " 4 4 - - - -  

2AD . #0) u(Ol #o~ 2c4,,A ~2 
C, 4 = ~ , ~xx yy -.zz D, 

U~) _ ( c l l  + 2 c 1 2 ) D  ~ 2 ;  D1 -'- 2caa(t31, + 2t312) + 3c24 > 0 
D1 

(A14) 

follows that Crzz is small inside the plate, so it can be 
considered to be o= ~ 0. Substituting this equation 
into Equation Ah, we obtain 

2 .2  

2 + 2 b t  
2 .2  

2 + 2 .  

2.uxy = oxr 

2gA ~2 
- - ( u =  + uyy) + 2,Uzz + ~ = cL.x 

k + 2 ,  
2pA ~12 

- - ( U z z  + uyy) + 2guy r + ~ = %r 
L +  2p 

(A9) 

Note that cq values in the numerator of the expres- 
sions for "co) (Equation A14) are unrenormed, ~ij 

Using Equations A2, A3 and A14 one can obtain 
the Lehnitsky equation for the stress function 

s l , ( U  . . . .  + Uyyyr) + 2(&2 + s44)Ux:,yy 

- -  3 s x 4 ( U x y y y  -a t- U x x x y  ) = 0 

(A15) 

where U . . . .  = 63*U/Ox4; U~ry = 634 U/63x2 @2, etc, if 
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= ~(x, y) satisfies the equation 

Cll  -~- 2C12 D ~2~ 
A~ - (A16) 

C44 A ~?x~3y 

from which it follows that Equation A15 holds in the 
case of stationary temperature distribution AT(x ,  
y) = 0, if D = 0. If D # 0, Equation A15 holds for the 
case ~ = constant. 

The solution to Equation A15 should be tried in the 
form 

U 

where 

Fl(,Zl) + Fz(z2) + F l ( z l )  + F2(z2) (A17) 

Z1, 2 = X + ~1,2Y (A18) 

In the case of a PT of a manifested first order, one 
should use 

I c l l  = C t x - 2 A Z b ;  c l z = c 1 2 - 2 A Z b ;  
(A22) 

c44 = c44 D2b ; ct4 = - 2ADb 

and all the above results again hold. 
After the problem of determination of stress com- 

ponents o ~ ,  Cryy and o~r is solved, ~z~ can be obtained 
with the help of the Equation 

Ozz = [-C12($11 "-[- S12 ) "~ C14.$14 ] 

X (~xx "+" O'yy) + (2C12S14 -'[- C14S44 ) (Yxy (A23) 

where ~1,2 a r e  the pair of unconjugated solutions of 
the Equation 18 

Sll  (~4" -- 3S14~3 + 2(S12 + $44) (~2 

- - 3 S 1 4 ~  d- S l l  = 0 (A18) 

Im61 > Imfi2. Note that the solutions of Equation 
A18 are always complex, and even in a cubic phase 
they can consist of both real and imaginary parts. The 
existence ofc14 r 0 (S14 =fi 0) in the phase q # 0 is the 
result of symmetry breaking under the PT. In the case 
of ferroelastics BaTiO3, PbTiO3 and KTa l_xNb,O3  
the striction constant can be estimated as 
A/E  ~- D/E ~- 10-1-10 -2 m 4 C  -2 [13], from which it 
follows that $14 "~ Ae/(EZ[~[) "~ 10-1~ -12 Pa -1, 
although in a cubic phase s u ~ 10- i t  pa -a .  Thus 
st4 is not obligatory, and can be neglected in compar- 
ison with the other s u values. If it can be neglected 

f 
~2 = --  k--k (k 2 - 1) 1/2 

k - 712 + ?~1 - ?~2 
(A20) 

Considering the initial phase to be elastically isotropic 
(2C44 = Cll  - -  tie), one can obtain k = 1 + ~(Cll + C12)/ 
[~11(1 - e ) ] ,  where ~ = D2/(~c44), and thus the two 
pairs of imaginary solutions follow. Under ~ ~ 1 

8 -~ _ i{1 + [e(~11 "t- ~t2)/271131/2} (A21) 

Denoting dFx/dzl----qb(zl); dF2/dz2 = I]/(z2) and 
using Equations A17 and 7, one can obtain the Equa- 
tions 20. Equations 21 for the displacement vector 
components can be obtained by integration of Equa- 
tion A2, using Equation A14 and giving up the terms 
corresponding to the displacement and rotation of the 
plane as a whole. 

Appendix  4. Cracks and thin inclusions 
in a low-symmet ry  phase: exact 
solutions 
A4.1. Symmetrical flat brittle crack 
Consider a flat brittle crack of a length 2L situated 
along Ox symmetrically with respect to the coordin- 
ates origin ,in an infinite elastically isotropic solid 
under the PT. The state Equations for this case are 
given by Equations 5 and 6, and the relations of stress 
and displacement and Kolosov-Mus'helishvily poten- 
tials by Equations 9 and 10. 

Potentials qb(z)and *(z) have the asymptotics 
oF(z) ~ F; ~'(z) ~ F' under Izl ~ oo, r being the real 
and F', in the general case, the complex constants [1]. 
F and F '  values are determined by the conditions in 
infinity. 

If the crystal is constrained, the PT results in an 
increase of stress which is able to open or close the 
crack. Consider the cases of constraints (1) uu( oo ) = 0 
and (2) uyy(oo) = 0. Using Equations 5, 6 and 9, one 
can obtain in the first case Crxx( oo ) = (ryr( oo ) = All 2, 
from which it follows that: 

F~ = All2~2; F~ = 0 (A24) 

and in the second case 

, I xA ~.12 
2F2 = F2 - _ (A25) 

X + 2 g  

Note that X > 0 is the equilibrium condition for the 
phase q 4= 0, thus the signs of F and F'  are determined 
only by the sign of A. 

Let the crack be opened due to the normal forces 
cr+(t) = cry(t)= - p(t), - L < t < L, where the super- 
script + and - are used to denote the stress values 
on the crack sides. 

Thus the problem is reduced to the well-known 
problem of a flat theory of elasticity [1], which in case 
(1) has the solution 

L 
1 (L 2 -- 

* ' ( Z ) = 2 g ( Z 2 -  L 2 ) l / 2 [ f  
-L  

n ( z )  = ~ ' (z )  

tz)l/ZP(t) dt + na i l  z]  
Z -- t 

(A26) 
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where fl(z) = 
In case (2) 

r,V(z) + ~(z) 

dp'(z) + e$"(z) + ~ ' (z) ; f (z)=- f (e)  

L 
1 n(z 2 - L2)1/2[f (L2 -t2)l/2p(t)z~ t 

-L  
_ npA[2z ~+ J 7 2 ~  (z2 - -  L2)1 /2]  112] 

~/)' (Z) - -  ~ (Z) --  _ ~ A  f i  2 
X + 2 p  

The results of Equations A26 and A27 are exact. They 
make it possible to obtain the OP and stress distribu- 
tion in a solid. The asymptotic of stress under p = 0 in 
the crack-tip vicinity is given by Equation 24. 

A4.2.  I mprope r  c u b i c  fe r roe las t ic  
In the case of an improper cubic ferroelastic, consider 
the suppressing of uxy( oo ) = 0, from which it follows 
that Oxy( ~ ) = - Dfl2; ~==( oo ) = %y( Go ) -- 0. The 
solution for the Lehnitsky potentials should be tried in 

dt 

(A27) 

Re[qbo(O) + ~to(O)] = O l ]  2 il 
2 ~ (o  - ~) 

Re[61~0(o) + 82qto(~)] - DrI=L 
2 ~-(o + 6) 

(A32) 

Integrating Equation A32 with the kern (o + ~) 
{2ni(o - ~)o2} -1 over the contour of the unit circle 
and returning to the planes Zl and z2, one can obtain 
the exact solution of the boundary problem (Equation 
A32) 

{~ao(Zl) = Dfi 2(L + i181)(L + ilSe) 1 
61 - -  62 Z 1 -}- [Z12 - -  (L  2 + 61212)] 1/2 

%(z2) = - D f i  2(L+iI81)(L +i182)  1 
61 - 62 z2 + [z 2 - (L z + 62212)31/2 

The crack case corresponds to the limit l--+ 0 

the form 

{~(zl)  = Mzl + ~o(Zl) 
(A28) 

q/(a2) = Bz  2 -4- ~to(Z2) 

where M is real and B = B' + iB". Using the condi- 
tions of infinity one can obtain 

IB" DflZV x,2 x,,2 8'12 + 6'12 1 
- I , , 2  - _  , , 2  - -  

t ,  tt 2 tt 2 
2 L62l'82 - 6a - ~ ~- ~1)2]J 

B' = - M - Dq2[ 28'z J 
2 6~ 2 - 8'; 2 - (61 - 61) 2 

(A33) 

I D f i 2 L  2 1 

~0(Z1)  ~- 81 - -  82 Z1 --}- (Z 2 - -  L2) I /2  
D~ 2 L 2 1 (A34) 

(q /~  81 - -  8 2 z 2  + (Z 2 - -  L2 ) l / 2  

from which the stress asymptotics (Equation 26) 
follows 

(A29) 

w h e r e  6tl,2 = Re81,2; 8tl,2 = Im81,2. 
For the crack which is not loaded, X,  = Y, = 0 and 

the last two of Equations 20 give the boundary condi- 
tions for the potentials ~o(Zl) and ~o(z2). Consider 
first the elliptical hole which has the boundary 

L il 
x = ~(cy + tg); y = 5 ( o  - 6) (A30) 

where o = exp (i0). After the conformal trans- 
formation 

L + i~1,21 L - i~1,2/1 
Zl,2 - ~ + (A31) 

2 2 

(of two different ellipses in complex planes zl and zz 
into the unit circle in the complex plain {, which is the 
same for both ellipses) the boundary conditions take 
the form 

A4.3. Rigid elliptical inclusion in elastically 
isotropic solid 

Consider a rigid elliptical inclusion in the case of the 
elastically isotropic solid under the PT with a flat 
dilatation. The condition u = v = 0 on the inclusion 
boundary (Equation A30) after the transformation 

L + l  L - l l  
z = m({) - { + - - -  (A35) 

2 2 

of the ellipse into the unit circle, gives the boundary 
condition 

co(m 
yFqb(o) co'(~) $'(~) - ~'(~) 

- o + ~ (A36) 
2 L - ~  
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Integration over the contour of a unit circle with the 
kern [27zi(~ - ~)]-1, (t~1 > 1) gives 

I ~(~) = C(L - I) . 
2~ ' 

[ L - l +  ~ 2 ( L +  l)~__~_ 1 

(tp(~) 
- C ( L + t )  ~ +  

2~ L l - ~ 2 ( L + l )  

(A37) 

Equation A37 is the exact solution of the boundary 
problem (Equation A36). The case of a thin inclusion- 
corresponds to l = 0. Returning to the plane z, one can 
obtain the asymptotics (Equation 28). 

A4.4. Rigid elliptical inclusion in improper 
ferroelastic 

In the case of a rigid elliptical inclusion inan improper 
ferroelastic, the boundary condition u = v = 0 results 
in the boundary equations 

2Re[ptqb(cr) + p2~(o)] 

{G1L +ilGa G1L-ilGa }f12 
= o r +  ~y 2 2 
2Re[qt~(cr) + q2O(~)] 

{G2L +ilGt GzL-ilG1 }fiE 
= 2 or+ -} e 

from which it follows that: 

(A38) 
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